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Abstract. We present simulAon results for non-uniform 20 star polymers, using a recursive 
implementation of the enrichment method. We show that the choice of parameters in lhis 
method is not hivial, and lhat a good choice can lead to exeemely efficient mde. We find that 
the exponents yf governing the increase of lhe f-sm parlition function with N are compatible 
with the prediction y/""'"" t f - 1 by Duplantier. 

During recent years, enormous progress has been made in understanding 2~ critical 
phenomena, mainly due to arguments based on conformal invariance. This also applies 
to polymeric systems in two dimensions. 

In particular, using such arguments Duplantier [ l ]  has conjectured gamma exponents 
for uniform networks made up of flexible chains with arbitrary topology. By 'uniform' we 
mean that all chains connecting any two vertices have identical len-4. In particular, for 
chain polymers with f branches the conjecture of [l] (see also [2]) is 

(1) 

where y;'"'' is defined via the number of distinct configurations with k e d  central 
. The am'tiun constant p is the same as for ordinary 

(unbranched) SAWS, and N is the total number of monomers. 
Equation (1) gives, in particular, the well known prediction y = $ for unbranched 

polymers (f = 1 or f = 2) [3]. and it gives 

86 - 9(f - 2 ) ( f  - 1) 
yfUnirom = 64 

vertex, 2, (/).UX%fOm , , , N N Y , ~ ~ ~ - I  

yiif- = E 16 YYifom = 1 (2) 
for 3- and 4-stars. All these predictions are nicely confirmed by exact calculations [MI. 

The situation is more confused for non-uniform (or 'polydisperse') star polymers. These 
are stars where the arms are allowed to have different lengths, the sum over all lengths being 
N. There, enumerations [7] have led to the conjecture 

(3) 

(4) 

yf = y + f - 1. 
However, theoretically it is predicted [SI that 

Y/ = v/ ud-+ f - 1 .  

For f = 3 and 4 this would give M = 3 + = 3.0625, y4 = 3.5. 
Finally, recent simulations by Zhao and Looban [9] have given values in between, 

YJ = 3.15 i 0.05 y4 = 3.65 & 0.05. (5) 
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Both values agree within three standard deviations with the predictions oL[8], such that 
there is no strict disagreement given the usual uncertainties in estimating critical exponents. 
But Zhao and Lookman say that they believe that such agreement ‘is not true for general 
non-uniform networks. For 3-stars, exact enumerations by Camacho era! [lo] gave a similar 
result, M = y + 1.79 Z!C 0.05. 

In this letter we want to present much larger simulations than those of 191 which suggest 
strongly that (4) is indeed correct for f = 3 and 4. We, of course, cannot say anything 
about more general networks. 

In [9], inversely restricted sampling (Rosenbluth and Rosenbluth method [ I  I]) was used 
to generate stars with N up to 180. For this largest N ,  50000 configurations were generated. 
In the present study we generated stars for all values of N up to 1000, and for each N the 
number of chains was > 10’. This large number should, of course, be understood with some 
caution. Due to the method used in our simulations (enrichment [12]; see below) most of 
our configurations are statistically dependent. But also the numbers of statistically strictly 
independent chains are rather large. For N = 180 they are > IO6 (all numbers quoted hold 
for f = 3 and for f = 4), and for N = 1OM) we still have 5 105 independent chains. 

But even these numbers are not really significant, just as the numbers quoted in [9] 
have to be properly interpreted in order to judge their significance. In the Rosenbluth 
method the main problem is that chains generated by the algorithm must be weighted 
when forming averages, with weights which become increasingly inhomogeneous with 
increasing N .  Thus, for large N all statistical averages are dominated by only a 
very few configurations even if the sample is huge, and thus statistical errors are 
much larger than one could expect naively. In our implementation of enrichment 
the problem is slightly different, but-unless special care is taken-with the same 
net effect. As we have already mentioned, in this method configurations are not 
generated independently. If the amount of correlation between successive configurations 
is (roughly) constant, this is not a big problem: we just have to count the number of 
independent configurations as we did above. But it might happen (and it does, unless 
the implementation is done carefully) that the correlation time varies strongly. In that 
case the total sample might be dominated by only a few clusters (or ‘tours’ in the 
notation of [13]) of strongly correlated configurations, and the statistical errors are again 
large. 

In our implementation [13] of the enrichment method for linear chains [I21 we use a 
recursively called subroutine STEP(=, N ) ,  the arguments of which are the actual end-point 
of the chain and its actual length N .  When called, it first marks the site z as occupied and 
selects a random7 neighbouring site o‘ of x. If this site is not yet marked as occupied and 
if N is smaller than the maximal chain length N-. STEP is called recursively with new 
arguments o’ and N + 1. After returning from this call, a uniformly diseibuted random 
number r E EO, I ]  is drawn, and STEP(%’, N + 1) is called again if r + 1 is less than some 
prescribed number PN > 1. The ‘last is the enrichment step proper, and it implies that we 
try, on average, PN extensions of each chain in the sample in order to overcome attrition. 

In the generalization to non-uniform star polymers, we first chose an arbitrary but 
fixed numbering of the branches, labelling them by numbers k = I ,  . . . f. The central 
vertex is located at 10, and the branches start at neighbouring sites zk. We add R as an 
additional argument in the subroutine STEP, and modify STEP(o, N ,  k) by including the 
following steps: after having marked z as occupied and before calling itself again with the 
same argument k, we choose a random number q and call STEP(xk+l, N + 1, k + 1) if 

t Except that we forbid immediate reversals of Ule chain. 
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4 C Q x f " ,  where the COnStantS Qk are chosen such that 0 C Q k P N  < I for all N and 
f. This we do, of course, only if k c f and N c Nmr and it corresponds to starting the 
next branch. The first call from the main program is with k = 1, and configurations are 
counted only if all f branches have really been generated, i.e. if the subroutine is called 
with k = j .  Indeed, by counting how often the subroutine was called with each value of 
k, we can estimate the numbers of k-star stars for all values of k (and for all N < N-) 
in a single runt. 

In this algorithm we have two sources of freedom: the probabilities PM - 1 for making 
a second attempt to prolongate a chain, and the probabilities Q k  to start a new chain. One 
can show that P is not allowed to depend on k ,  and Q has to be independent of N, if 
one wants to avoid any bias. This bias could be compensated only if one keeps detailed 
statistics for the numbers of stars with Nk branches, which would have not been easy on 
the sort of workstation where the present work was done (the 'bias' introduced by having 
PN depend on N and Q k  on k is removed trivially, in contrast). A possible criterion in 
choosing these constants could be the same as with unbranched SAWS [ 14,151: we want to 
compensate.attrition as neatly as possible, i.e. we want to generate roughly the same number 
of configurations for each N. Otherwise we would not generate enough long chains (if PN 
is too small), or we would generate too many strongly correlated stars (if PN is too large). 
With Q k  ~3 1 this would imply PN M (3/p)(1 + l/N)'-YJ [151. 

But it is not clear a prior! that Qx ~3 1 is a good choice. We had tried it first, with 
disastrous results: although the numbers of independent configurations were large when PN 
was chosen according to the above criterion, we ran into the problem that only very few 
large clusters of correlated configurations dominated even huge samples. It is indeed not 
too difficult to understand that the best choice is Qk >> 1: with f N Q x  = 1 we Start a 
new branch at every step, which means that a very large number of high-k branches are 
generated in the same 'background' of low-k branches. In an optimal implementation, the 
number of branches generated should be roughly the same for each k .  This is achieved with 
Q k  % k / N - .  Actually we got best results with slightly larger values, Q x  = k/150, and 
with PN = 3(1+ 1/(N +2)) -1 ,6 /p .  With this choice, we were able to reduce CPU times by 
factors ~3 103, compared to simulations with Q k  % I. This is in spite of the fact that the 
number of configurations increases quite strongly with N. It seems to be more important 
to have a sample well balanced over k than over N. We should, however, stress that this 
choice need not be optimal. We did not attempt any systematic optimization, thus further 
improvements might have been possible. 

Our final results, based altogether on % 150 h CPU time on DEC ALPHA workstations, 
are shown in figure 1. There we plotted effective exponents 

against 1/N. For @ we used the value of [la]. The curves connect points with successive 
values of N, and the thickness of the curves correspond to f l  standard deviation. 

If there were only analytic corrections to scaling, these lines would be sbaight, and the 
extrapolations to 1/N --f 0 would give YJ .  We see that there are obviously non-analytic 

t We should mention that lhis is not the only way to implement enrichment recursively. A different st~uchue is, 
for example. bem suited for sms with the end-point fixed. But 41 these implementations are equivalent as fat as 
efllciency is concemed. We should also point out that uniform slat polymers can be generated in a very similar 
way: we just csll STEP(q+l, N + I .  k + I )  only when the kth branch is finished. We f indy point out that OUT 
algorithm generates a sample where c o n f i g d o n s  are considered different if they involve different bonds. even 
if sites are the same ('weak embedding'). 
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F i p  1. Effective exponenls (see equation (6)) for non-uniform 3-stan (lower curve) and 
4-stars (upper curve), plotted against the inverse total number of monomers. Por large N. the 
thickness of the curves indicates f l  standud deviation. while the slatistical ermm are much 
smaller than the thickness lor small N. 

corrections to scaling. They are particularly strong for f = 4, but they =e also significant 
for f = 3. Both curves cannot be fined by simple power laws, whence a single correction 
term would not be enough. For that reason also plotting the data against any other negative 
power of N would not give straight lines, and extracting the leading correction to scaling 
becomes very difficult, As a consequence, the extrapolation is not trivial. Our final error 
bars are essentially educated guesses and are much larger than the statistical errors of our 
finibN data. We obtain 

n = 3.065 i 0.010 y4 = 3.53 i 0.02. (7) 
This suggests that (4) is indeed satisfied. 

I am indebted to C v Ferber and L SchXfer for pointing out IS] to me. This work was 
supported by DFG, SFB 237. 

References 

[I] Duplantier B 1986 Phys. Rev. Len. 57 941 
121 Ohno K and Binder K 1988 J. Physique 49 1329 
[3] Nienhuis B 1982 Phys. Rev. Lett. 49 1062 
[41 Wilkinson M K. Gaunt D S, Lipson J E G and Whinington S G 1986 1. Pkys. A: Mnrh Gen. 19 789 
[SI Gannt D S, Lipson J E G, Whilhgton S G and W i W o n  M K 1986 J. Phys. A; Mnrh. Gem 19 Ull 
[6] Lipson J E 0, Gaunt D S,Wilkinson M K and Whittingm S G 1986 Mnemmolecules 20 186 
171 Gaunt D S. Lipson J E G. Tome G M. Whinington S G and W i h o n  M K 1984 1. Phys. A: M& Gen. 

[SI Duplantier B 1989 J, Sfat Pkys. 54 581 
[91 zhno D and Laokman T 1994 Eumphys. Len. 26 339 

17 211 



Lefter to the Editor 

1101 Camacho C J, Fisher M E and Straley J P 1992 Pkys. Rev. A 46 6300 
[Il l  Rosenbluth M Nand Rosenbluth A W 1955 I Chem. Phys, 23 356 
[I21 Wall F T and Erpenbeck J I 1959 J. Ckem Pkys. 30 634, 637 
(131 Crassberger P and Hegger R 1994 Preprint WU-B 94-01 
[I41 B e d  A and Sokal A D 1985 I Sfor. Phys. 40 483 
[IS] Crassberger P 1993 3. Pkys, A: Math Gen. 26 2169 
1161 Conway A R, Entingl C and Guttmann A J I993 J.  Phys. A: Math. Gen. 26 1519 

L725 


